Ultrafast nanooptics

Propagation and coherent control of excitations in optical nano-circuits (Brixner, Hecht)

Optical nanocircuits consist of (i) optical antennas to efficiently excite specific local modes by far-field radiation, (ii) a small-footprint network of optical transmission lines (OTLs) to distribute and manipulate plasmonic excitations, and (iii) another set of optical antennas to efficiently convert local modes into propagating photons. The understanding of optical nanocircuits and a “systems approach” for their theoretical description in terms of discrete circuit elements, respective impedances and their interactions are fundamental for the realization and optimization of nano-optical devices and applications in areas such as sensing, (quantum) information processing, and nanometerscale coherent light sources.

We employ far-field spectral interferometry to fully characterize amplitude and phase of propagating plasmons that are transmitted through circuit elements in the form of ultrashort pulses. This enables us in particular to determine the group velocity of, e.g., plasmons on silver nanowires as a function of geometrical parameters.

 

Producing high-quality nanostructures, e.g., sophisticated circuit elements, is a very challenging task that we tackled by developing a method to fabricate single-crystalline gold flakes. In contrast to vapour-deposited multi-crystalline gold layers, these single-crystalline gold flakes allow for high-precision focused ion-beam milling.

 






Publications

Coherent Control of Plasmon Propagation in a Nanocircuit
C. Rewitz, G. Razinskas, P. Geisler, E. Krauss, S. Goetz, M. Pawłowska, B. Hecht, and T. Brixner
Phys. Rev. Applied 1 (2014) 014007
Multimode plasmon excitation and in-situ analysis in top-down fabricated nanocircuits
P. Geisler, G. Razinskas, E. Krauss, X.-F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C.-B. Huang, T. Brixner, and B. Hecht
Phys. Rev. Lett. 111 (2013) 183901
Spectral-interference microscopy for characterization of functional plasmonic elements
C. Rewitz, T. Keitzl, P. Tuchscherer, S. Goetz, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner
Opt. Express 20 (2012) 14632
Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry
C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner
Nano Lett. 12 (2012) 45
Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry
J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J.C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser & B. Hecht
Nat. Commun. 1 (2010) 150
Subwavelength broadband splitters and switches for femtosecond plasmonic signals
A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner
Opt. Express 18 (2010) 11810
Analytic coherent control of plasmon propagation in nanostructures
P.Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner
Opt. Express 17 (2009) 14235
Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits
J.-S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht
Phys. Rev. B 79 (2009) 195441
Ultrafast Nanooptics > SPP 1391 > Projects > Project details